

R. C

63

. . .

OVAL TRACK SYSTEM

SAIBO provides a wide choice of sizes and options to build linear, curve motion system. All of components including linear guides, ring guides, bearings and lubricate parts are designed standard and modularized. Customer can select and build motion system easy and quickly.

S&IBO

- Rail Profiles are produced in German.Design and produce according to DIN standard.
- Ring rail radius are standard, Straight rail length is optional.
- Additional locating device realize carriages precision location.
- The connections between belt and carriages are flexible and torque protected.
- Raydent (corrosion protection) is optional for rail.

S&IBO

- Straight RailMade of Germany high quality bearing steel
Deep hardened in working surfaces for high wear resistance
Ground Double 70° V working edges together to ensure parallelism
Soft rail body for customization machining process
Provide 3 standard sizes for customer's selection
Two precision rails G1 and G3 is optional, ground and un-ground
Precision G3 rail length could be up to 5.5meters without connection
Longer length (Unlimited) can be achieved by Connection
 - Ring RailMade of high quality bearing steel
Deep hardened in working surfaces for high wear resistance
Ground Double 70° V working edge ensure parallelism
All surfaces are ground for precision
Provide wide range of standard sizes
Customized assembly holes are available

Precision SAIBO provides two precision grades. G1 ground and G3 unground. Here we must emphasize that G3 grade's motion is also very smooth and stable. It is fit for smooth running without very high precision and low cost request. But when linear rail connect ring rail, it must be G1 grade.

Rollers Made of high quality bearing steel Whole body hardened for high wear resistance Supply Twin and Double row bearings (See below figure) Concentric / Eccentric bolt supplied

Floating Bearing

Outer ring could float in axial direction to compensate installation parallelism Made of high quality bearing steel Whole body hardened for high wear resistance Concentric / Eccentric bolt supplied

Roller Type Selection SS SVR 25 RS DR C Bolt Type, C :concentric, E: Eccentric, DE: Double Eccentric for Curve Rail Roller Internal Structure (DR; Double Balls Roller, F; Floating Roller, Vacant is Twin Bearing.) Seal Type (RS : Rubber seals, ZZ : Steel Shields) Roller Type Roller Material (SS: Stainless Steel, Vacant is Bearing Steel)

Cap Seal Protect bearing against dust

Protect operator for safety

Lubricated felt wiper contact rail's working surface to increase load capacity and life

Standard and interchangeable

Lubricate Wiper Lubricated felt wiper contact rail's working surface to increase load capacity and life

Lubricated felt wiper is pushed lightly by a small spring to ensure low friction with the rail's working surface

Easy to fill lubricate oil from its fill hole

Standard and interchangeable

Lubricate Lubricated felt wiper contact rail's working surface to increase load capacity and life

Lubricated felt wiper is pushed lightly by a small spring to ensure low friction with the rail's working surface

Oil charging holes supplied for the Track Motion System

Automatic lubricate bleed could connect to the rail's oil charging holes very easily.

Standard and interchangeable

56 IBO

Oval Rail

Accombly code					
Assembly code	Straight Rail	Ring Rail	Carriage	А	В
SB-LGV25XL-CR25 159 R180		CR25 159 R180	SRC25 159		95
SB-LGV25XL-CR25 255 R180	SB-LGV25	CR25 255 R180	SRC25 255	80	100
SB-LGV25XL-CR25 351 R180		CR25 351 R180	SRC25 351		105
SB-LGV44XL-CR44 468 R180	SP LCV///	CR44 468 R180	SRC44 468	116	145
SB-LGV44XL-CR44 612 R180	3B-LGV44	CR44 612 R180	SRC44 612	110	150
SB-LGV76XL-CR76 799 R180		CR76 799 R180	SRC76 799		190
SB-LGV76XL-CR76 1033 R180	SP LCV76	CR76 1033 R180	SRC76 1033	105	210
SB-LGV76XL-CR76 1267 R180	38-10776	CR76 1267 R180	SRC76 1267	185	250
SB-LGV76XL-CR76 1501 R180		CR76 1501 R180	SRC76 1501		270

-		-
L	-	Z
_		_

	Dimension								
C	C1	D	E	F	Н	H1	М	S°	T٥
80	85		4xM6	2x6			159	45	22.5
85	80	50	4xM6	2x6	30.5	11.5	255	45	22.5
90	85		4xM6	2x6			351	30	15
125	120	75	4xM8	2x8	20 5	1.4 Г	468	30	15
130	125	/ 5	4xM8	2x8	38.5	14.5	612	22.5	11.25
165	160		4xM10	2x10			799	22.5	11.25
185	180	100	4xM10	2x10	гог		1033	18	9
225	205	100	4xM10	2x10	20.2	20	1267	18	9
245	225		4xM10	2x10			1501	18	9

56 IBO

Ring Rail

Туре	Applicable Bearing	A	В	С	E	G	н
CR25 159	SVR-25	159	143.6	174.4	25	15	12.25
CR25 255	SVR-25	255	239.6	270.4	25	15	12.25
CR25 351	SVR-25	351	335.6	366.4	25	15	12.25
CR44 468	SVR-34	468	442	494	44	26	15.5
CR44 612	SVR-34	612	586	638	44	26	15.5
CR76 799	SVR-54	799	749	849	76	50	24
CR76 1033	SVR-54	1033	983	1083	76	50	24
CR76 1267	SVR-54	1267	1217	1317	76	50	24
CR76 1501	SVR-54	1501	1451	1551	76	50	24

Type Code

CR25351 R180 (N)

Screw holes option

Segement angular 90° \$ 180° \$ full 360° Ring

Ring rail size

I	J	L (Ø×depth)	ØM	Hole Number	Hole F	osition 0.2	Weight (kg)
		(~		(R=360°)	S°	Τ°	(R=360°)
10	4.2	10x6	6	8	45	22.5	0.77
10	4.2	10x6	6	8	45	22.5	1.2
10	4.2	10x6	6	12	30	15	1.65
12.5	6	11x7	7	12	30	15	5.1
12.5	6	11x7	7	16	22.5	11.25	6.7
19.5	9	20x13	11	16	22.5	11.25	25
19.5	9	20x13	11	20	18	9	32
19.5	9	20x13	11	20	18	9	41
19.5	9	20x13	11	20	18	9	48.7

Straight Rail

Tupo	l A	A	E	3	C		
туре	G1	G3	G1	G3	G1	G3	
SB-LGV25XL	25	25.2	12.25	12.9	15	15.5	
SB-LGV44XL	44	44.2	15.5	16.2	26	26.5	
SB-LGV76XL	76	76.2	24	24.7	50	50.5	

Type Code

G		Δ4	N v denth	D	c	Lmax		
G1	G3	IVI	in A deptil		3	G1	G3	
10	10.35	5.5	10x5.5	90	45	2000	5500	
12.5	12.85	7	11x7	90	45	2000	5500	
19.5	19.85	11	20x12	90	45	1900	5500	

S¢ IBO

Rollers

		_			Bearing Load	Capacities(N)	
Туре	Roller Category	Outer Diameter A	Distance J	Rad	dial	A	kial
				Со	С	Со	С
SVR-25C			-				
SVR-25E	Twin bearing		0.75	1320	3320	330	800
SVR-25DE			2				
SVRD-25C		25	-				
SVRD-25E	Double row bearing	25	0.75	2535	7710	840	1650
SVRD-25DE			2				
SVRF-25C	Election has size		-				
SVRF-25DE	Floating bearing		2	6150	4980	-	-
SVR-34C			-				
SVR-34E	Twin bearing		1	2630	5980	560	1280
SVR-34DE			2.5				
SVRD-34C		24	-	5260			
SVRD-34E	Double row bearing	34	1		9690	1380	2540
SVRD-34DE			2.5				
SVRF-34C	Floating booving		-				
SVRF-34DE	rioating bearing		2.5	12600	11000	-	-
SVR-54C			-				
SVR-54E	Twin bearing		1.5	6700	13700	1180	2350
SVR-54DE			5.5				
SVRD-54C		E /	-				
SVRD-54E	Double row bearing	54	1.5	13400	22200	2800	4650
SVRD-54DE			5.5				
SVRF-54C	Electing bearing		-	29000	21300	-	<u> </u>
SVRF-54DE	rioating bearing	-	5.5	2,000	21500		

Dimension								
В	С	D	E	F	G	Н	I	
16.5	11.3	14	9	M8	8	13	3	
18.1	11.3		Max 10.5 Min9					
21	14.3	18	11.5	M10	10	15	4	
23.2	14.3		Max 13.5 Min11.5					
33.5	19.8	28	19	M14	14	27	6	
37.2	19.8		Max 21.6 Min19					

Linear Guide

SLC A

									Dim	nension
Rail	Carriage	Roller	_	P	C	D	E	E	G	Н
			A	D	C	U	E		G	G1
	SLC25A			80		24	4xM6			
SB-LGV25XL	SLC25B	SVR-25C	80	135	65	60	6xM6	25	11.5	30.5
	SLC25C	JVR-2JL		180		82	6xM6			
	SLC44A			125		50	4xM8			
SB-LGV44XL	SLC44B	SVR-34C	116	180	96	80	6xM8	44	14.5	38.5
	SLC44C	SVR-34E		225		103	6xM8			
	SLC76A			200		90	4xM10			
SB-LGV76XL	SLC76B	SVR-54C	185	300	160	135	6xM10	76	20	58.5
	SLC76C	3VN-34E		400		185	6xM10			

56 IBO

									load capa	acities(N)					
	1		N x dopth	N x denth	N v denth	N x denth	N x denth	D	c	Lm	ax	Double Ro	w Bearings	Twin Bearings	
G3	I	111		F	P 5	G1	G3	Fy	Fz	Fy	Fz				
30.85	16.5	5.5	10x5.5	90	45	2000	5500	1600	3000	1280	1200				
38.85	21	7	11x7	90	45	2000	5500	3600	6000	3200	2800				
58.85	33.5	11	20x12	90	45	1900	5500	10000	10000	7200	6400				

Assembly manual

1. Match rollers to carriage plate

Please mount the concentric bearing to one side of carriage plate, and eccentric bearing to the other side following the direction of railway. In case of circle motion carriage, the concentric bearing should be mounted to the side where mounting-hole distance is shorter. Please refer to below picture.

Circle motion carriage plate

2. Mounting to railway

Carriage assembly should be mounted from the end of railway.Please do not put any overstress when mounting.

3. Adjust the clearance between bearing and railway

-Tighten concentric bearings first.

-Then rotate eccentric bearing via rotate hexagonal key at the end of stud to adjust the clearance between railway and bearing.

-Adjust the clearance to zero.

-Slide the carriage by hand and adjust to the extent where there causes a slight slipping resistance.

Correct condition is where moving power becomes the recommended value as below table by putting load by push-pull gauge to the running direction of carriage.

Recommended pre-load by push-pull gauge

V track bearing size	Pre-load(N)
25	4
44	8
76	12

-Keep eccentric bearing's position and tighten the nut.

Important note Appropriate pre-load provide the system rigidity. However, over preload will decrease system's life rapidly. Please be careful.

Load / Life calculation Due to the hardness of the railway and fatigue analysis of railway and roller, the railway's life does not determine the system life. It is determined by roller's life. Load capacity of the motion guide system varies mainly by the size of bearing and railway, lubricated or not, and the load magnitude and direction. Other factors include speed and acceleration and environment etc. To calculate system life, loading factor LF should be calculated firstly. Here we provide two methods to calculate the loading factor.

Standard 4 bearings carriage calculation

If the system use SAIBO standard 4 bearings carriage, then calculation can use below formula.

- Fy Actual load in Y direction. (N)
- Fz Actual load in Z direction. (N)
- Mx Actual moment in X direction. (N·m)
- My Actual moment in Y direction. (N \cdot m)
- Mz Actual moment in Z direction. (N·m)

Below parameters can be taken from the table of Load capacity.

Fy max - Max load capacity in Y direction. (N)

Fz max - Max load capacity in Z direction. (N)

Mx max - Max moment capacity in X direction. (N·m)

My max - Max moment capacity in Y direction. (N⋅m)

Mz max - Max moment capacity in Z direction. $(N \cdot m)$

Carriage Type	Dry system Double Row Bearings and Twin Bearings					Lubricated system/Twin Bearings					Lubricated system/Double Row Bearings				
	Fy	Fz	Мx	My	Mz	Fy	Fz	Мx	My	Mz	Fy	Fz	Мx	My	Mz
	Ν	Ν	Nm	Nm	Nm	Ν	Ν	Nm	Nm	Nm	Ν	Ν	Nm	Nm	Nm
SLC25	410	410	4.6	200xD	200xD	1300	1225	14	600xD	640xD	1610	3020	18.2	1500xD	800xD
SLC44	790	790	16	400xD	400xD	3250	2830	65	1400xD	1600xD	3620	6050	74	3000xD	1800xD
SLC76	1850	1850	65	900xD	900xD	7250	6380	255	3200xD	3600xD	10050	10050	365	5000xD	5000xD

Straight rail carrige's load capacity

Camiana	Double I	Dry Row Beari	system	n d Twin Bi	earings	Lubricated system/Twin Bearings					Lubricated system/Double Row Bearings				
Type	Fy	Fz	Мx	My	Mz	Fy	Fz	Mx	My	Mz	Fy	Fz	Mx	My	Mz
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N	N	Nm	Nm	Nm	N	N	Nm	Nm	Nm	N	N	Nm	Nm	Nm
SRC25 159	410	410	4.6	8.7	8.7	1300	1225	14	25.5	27.5	1610	3020	18.2	65	33.5
SRC25 255	410	410	4.6	8.2	8.2	1300	1225	14	23.5	25.5	1610	3020	18.2	60	31.5
SRC25 351	410	410	4.6	8.7	8.7	1300	1225	14	24.5	27.5	1610	3020	18.2	64	33.5
SRC44 468	790	790	16	28.2	28.2	3250	2830	65	97	112	3620	6050	74	215	120
SRC44 612	790	790	16	28	28	3250	2830	65	100	110	3620	6050	74	225	130
SRC76 799	1850	1850	65	87	87	7250	6380	255	305	345	10050	10050	365	480	480
SRC76 1033	1850	1850	65	105	105	7250	6380	255	365	415	10050	10050	365	580	580
SRC76 1267	1850	1850	65	122	122	7250	6380	255	425	480	10050	10050	365	680	680
SRC76 1501	1850	1850	65	138	138	7250	6380	255	490	550	10050	10050	365	780	780

Ring rail carriage's load capacity

Roller load factor

If the system does not use SAIBO standard 4 roller carriage, It is necessary to calculate each roller's loading factor. Biggest loaded roller's load determines the system's life.

S&IBO

LF - Loading factor

LF should be less than 1.0 for any combination of load

Fy - Actual axial capacity. (N)

Fz - Actual radial capacity. (N)

Below parameters can be taken from below table. Fy max - Max axial load. (N) Fz max - Max radial load. (N)

Roller's load capacity Please refer to page 13.

Life calculation After getting Loading Factor LF, the life in km can be calculated by selecting one of below two formulas. The basic life can be taken from table below.

Dry system Life(km) =
$$\frac{\text{Basic_life}}{(0.03+0.97\text{LF*f})^2}$$

what a day at a second	Life(km) -	Basic_life
ibricated system	Lite(km) =	(0.03+0.97LF*f) ³

Basic life	Bearing type	Dry system	Lubricated system			
	SVR-25	100	150			
	SVR-34	100	150			
	SVR-54	150	250			

None vibration or shock, Low speed (<1m/s), Low frequency shift direction, clean environment.	1-1.5
Light vibration or shock, medium speed (1-2.5m/s) medium frequency shift direction, some dirtiness	1.5-2
Heavy vibration or shock, high speed (>2.5m/s) high frequency shift direction, heavy dirty	2-3.5

f - Reduction coefficient of the application and environment.

Calculation example

A machine use SB-LGV25 spacer railway and standard carriage. The carriage and work-piece total weight 8 kg. When the carriage moving, there is an external load of 50 N exerted as below drawing. Working environment is clean. There is none vibration or shock.

The load factor LF is calculated use formula

$$LF = \frac{Fy}{Fymax} + \frac{Fz}{Fzmax} + \frac{Mx}{Mxmax} + \frac{My}{Mymax} + \frac{Mz}{Mzmax}$$

$$Fy = 8kg x 9.8 (gravity) = 78.40 N$$

$$Fz = 50 N$$

$$Mx = 50 \times 0.05 = 2.5 N \cdot m$$

$$My = 0$$

$$Mz = 0$$

Take parameters Fy max, Fz max, Mx max, My max, Mz max from table and then fill in the formula

$$\mathbf{LF} = \frac{78.4}{1280} + \frac{50}{1200} + \frac{2.5}{14} + \frac{0}{\text{Mymax}} + \frac{0}{\text{Mzmax}} = 0.2816$$

Then life (km) calculation can use formula as below:

Dry system Life(km) = $\frac{\text{Basic_life}}{(0.03+0.97\text{LF*f})^2}$

Basic life is 100km.

According to the description of working condition, take f=1.3.

Life(km) = $\frac{100}{(0.03+0.97*0.2816*1.3)^2} = 674$ km

Lubricated system Basic life is 150 km, take f=1.1

Life(km) = $\frac{\text{Basic_life}}{(0.03+0.97\text{LF}^{*}\text{f})^{3}}$

Life(km) = $\frac{150}{(0.03+0.97*0.2816*1.1)^3} = 4155$ km

From this example, it shows clearly that lubrication is so important for the life. Please pay attention to install the lubrication system for your system.

LM76 is an international designer, manufacturer and supplier of linear bearings, linear shafting and linear slides.

Whenother's think catalog_We think SOLUTION

